1,941 research outputs found

    Architecting Self-adaptive Software Systems

    Get PDF
    Peer reviewe

    And now for something completely different : inattentional blindness during a Monty Python's Flying Circus sketch

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm)Perceptual science has frequently benefited from studying illusions created outside of academia. Here, we describe a striking, but little-known, example of inattentional blindness from the British comedy series “Monty Python's Flying Circus.” Viewers fail to attend to several highly incongruous characters in the sketch, despite these characters being clearly visible onscreen. The sketch has the potential to be a valuable research and teaching resource, as well as providing a vivid illustration of how people often fail to see something completely differentPeer reviewedFinal Published versio

    Visual Search Without Selective Attention: A Cognitive Architecture Account

    Full text link
    A key phenomenon in visual search experiments is the linear relation of reaction time (RT) to the number of objects to be searched (set size). The dominant theory of visual search claims that this is a result of covert selective attention operating sequentially to “bind” visual features into objects, and this mechanism operates differently depending on the nature of the search task and the visual features involved, causing the slope of the RT as a function of set size to range from zero to large values. However, a cognitive architectural model presented here shows these effects on RT in three different search task conditions can be easily obtained from basic visual mechanisms, eye movements, and simple task strategies. No selective attention mechanism is needed. In addition, there are little‐explored effects of visual crowding, which is typically confounded with set size in visual search experiments. Including a simple mechanism for crowding in the model also allows it to account for significant effects on error rate (ER). The resulting model shows the interaction between visual mechanisms and task strategy, and thus it represents a more comprehensive and fruitful approach to visual search than the dominant theory.Visual Search without Selective Attention calls into question the necessity of a covert selective attention mechanism by implementing a formal model that includes basic visual mechanisms, saccades, and simple task strategies. Across three search tasks, the model accounts for response times as well as the proportion of errors observed in human participants, including effects of item crowding in the visual stimulus.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147754/1/tops12406.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147754/2/tops12406_am.pd

    Strategic Resource Allocation in the Human Brain Supports Cognitive Coordination of Object and Spatial Working Memory

    Get PDF
    The ability to integrate different types of information (e.g., object identity and spatial orientation) and maintain or manipulate them concurrently in working memory (WM) facilitates the flow of ongoing tasks and is essential for normal human cognition. Research shows that object and spatial information is maintained and manipulated in WM via separate pathways in the brain (object/ventral versus spatial/dorsal). How does the human brain coordinate the activity of different specialized systems to conjoin different types of information? Here we used functional magnetic resonance imaging to investigate conjunction- versus single-task manipulation of object (compute average color blend) and spatial (compute intermediate angle) information in WM. Object WM was associated with ventral (inferior frontal gyrus, occipital cortex), and spatial WM with dorsal (parietal cortex, superior frontal, and temporal sulci) regions. Conjoined object/spatial WM resulted in intermediate activity in these specialized areas, but greater activity in different prefrontal and parietal areas. Unique to our study, we found lower temporo-occipital activity and greater deactivation in temporal and medial prefrontal cortices for conjunction- versus single-tasks. Using structural equation modeling, we derived a conjunction-task connectivity model that comprises a frontoparietal network with a bidirectional DLPFC-VLPFC connection, and a direct parietal-extrastriate pathway. We suggest that these activation/deactivation patterns reflect efficient resource allocation throughout the brain and propose a new extended version of the biased competition model of WM. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    Attention mechanisms in the CHREST cognitive architecture

    Get PDF
    In this paper, we describe the attention mechanisms in CHREST, a computational architecture of human visual expertise. CHREST organises information acquired by direct experience from the world in the form of chunks. These chunks are searched for, and verified, by a unique set of heuristics, comprising the attention mechanism. We explain how the attention mechanism combines bottom-up and top-down heuristics from internal and external sources of information. We describe some experimental evidence demonstrating the correspondence of CHREST’s perceptual mechanisms with those of human subjects. Finally, we discuss how visual attention can play an important role in actions carried out by human experts in domains such as chess

    Perceptual Pluralism

    Get PDF
    Perceptual systems respond to proximal stimuli by forming mental representations of distal stimuli. A central goal for the philosophy of perception is to characterize the representations delivered by perceptual systems. It may be that all perceptual representations are in some way proprietarily perceptual and differ from the representational format of thought (Dretske 1981; Carey 2009; Burge 2010; Block ms.). Or it may instead be that perception and cognition always trade in the same code (Prinz 2002; Pylyshyn 2003). This paper rejects both approaches in favor of perceptual pluralism, the thesis that perception delivers a multiplicity of representational formats, some proprietary and some shared with cognition. The argument for perceptual pluralism marshals a wide array of empirical evidence in favor of iconic (i.e., image-like, analog) representations in perception as well as discursive (i.e., language-like, digital) perceptual object representations

    Visual perceptual load induces inattentional deafness

    Get PDF
    In this article, we establish a new phenomenon of “inattentional deafness” and highlight the level of load on visual attention as a critical determinant of this phenomenon. In three experiments, we modified an inattentional blindness paradigm to assess inattentional deafness. Participants made either a low- or high-load visual discrimination concerning a cross shape (respectively, a discrimination of line color or of line length with a subtle length difference). A brief pure tone was presented simultaneously with the visual task display on a final trial. Failures to notice the presence of this tone (i.e., inattentional deafness) reached a rate of 79% in the high-visual-load condition, significantly more than in the low-load condition. These findings establish the phenomenon of inattentional deafness under visual load, thereby extending the load theory of attention (e.g., Lavie, Journal of Experimental Psychology. Human Perception and Performance, 25, 596–616, 1995) to address the cross-modal effects of visual perceptual load
    corecore